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ABSTRACT INTRODUCTION

The one-dimensional analysis of long rod A problem of obvious technological significance is
penetration into semi-infinite targets as developed by the penetration of armor by projectiles. This problem
Tate has previously been modified by the present has received considerable attention over the last few
authors to include the effects of mass transfer into decades. At one stage, the emphasis was on improved
the plastic zone and the mushroom strain at the design of body armor; at another, it was enhanced
penetrator tip. This latter factor has a substantial penetrator design. During this same period the
effect on calculated penetrations. This paper reviews development of very fast, high-capacity computers
the modified theory, extends its application to several enabled the penetration problem to be modeled with
cases not previously treated, and then details the great detail, provided that the target and projectile
results of a series of experiments that tend to confirm materials were adequately described. However, the
the validity of the modified mathematical model, corresponding descriptions of the penetration process

were far more detailed than any experimental results
NOTATION with which they might be compared.

From the experimental point of view, the mechanics
A initial cross-sectional area of rod of penetration has been studied for many years.

However, slow progress with analytical techniques has
C (YIp]" caused most of the efforts to be supported by numerical
• engineering strain studies. Nevertheless, simple one-dimensional theories

S internal force have held the greatest attraction for most
L initial length of rod experimentalists. Among such theories. that of Tate
I remaining undeforued length of rod [1.21 seems to have attracted the greatest following.
I final remaining undeformed length of rod Whatever approach is adopted, and whatever

P interface force theories employed, the design engineer confronted with
p interface pressure high speed penetration faces a difficult problem.
R target strength Materials selection under very high rates of loading
t elapsed time since impact has confronted and confounded designers for many
u speed of penetration into target decades. A thorough understanding of all the relevant
V Initial impact speed of rod material parameters and their effects on flow and

v current speed of rod fracture would be required for the selection of
X length of rod that has been consumed materials which are optimally suited for particular
Y rod strength high strain rate applications. However, since this
a penetration depth information is usually not available, other approaches
a, final penetration depth are required. This is the motivation behind the use of

one-dimensional engineering models... Even though such
A increment an approach is generally not capable of providing

A2  ratio of target strength to that of rod detailed information on specific aspects of the events,
2 it can provide valuable Insights into the interactions

0 ratio of mass density of target to that of the parameters in the problem.
of rod

P mass density of rod
derivative with respect to time
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Recently, the one-dimensional long rod penetration
theory of Tate [1,21 was modified by the present
authors 13,4 so as to account for mass loss from the
undeformed section through the rigid-plastic interface. P I t )
This modification makes the equation of motion exact
Instead of approximate. NathematLcally, it adds a
relative motion term to the existing equation of
motion. This presented a slight increase in
complexity, but introduced a more realistic. non-zero P
strain at the penetrator tip. Being able to take ('0).., ,_J"
account of the tip strain of such a mushrooming
penetrator is a substantial improvement over the
original theory. Calculations based on this
modification yield quite reasonable estimates of
penetration depths using realistic values of the target Fig. 2 Schematic of the transfer of mass
and penserator strengths. In the present paper, we element pAAX from the undeformed to
review some of the details of the extension of Tate's
theory. Then, several cases are treated in which the plastic portion of rod.
solutions can be obtained in closed form. After that, The velocities u and v are coupled by a
some recent experimental. results are presented that kinematical relationship. This relationship can be
tend to confirm the validity of this modified theory. derived by equating the distances in Figure 3. At time

t, the undeformed section has length t and speed v. AtTHEORY a later time, t + At, the undeformed section has lostan increment of length at to plastic deformation.
Consider the normal penetration of a semi-infinite Since the engineering strain at this point is 0, the

target by an axieymnetric, cylindrical rod of initial corresponding length of the newly deformed section
length L. The rod material can be separated into rigid (mushroom) is a(l + e). The total distance I + u At
and plastic regions during the penetration process must equal v At + (L - At) + At (1 + e). Therefore,
(Fig. 1). The plastic region is wafer thin and u At - v At + a At. Dividing by At and passing to the
Instantaneously eroding. However, the mean enginec-Lng limit as at 4 0, leads to
strain in the plastic region (mushroom) is non-zero.
This allows for the deformed and undeformed sections of ea - v - u (2)
the rod to have different diameters.

Notice that Fig. 3 requires -AL/At to go to A. This
r-x-- Z-x---- kinematical equation replaces the classical equation

A -- (v-u) used by Tate [1,21.

- ., -'1
L" L-X

Fig. 1 Schematic of rod. (a) Shows plastic
portion 1, and undeformed portion Fig. 3 Schematic illustration of the rear
L-X-9. (b) Shows penetration into portion of the projectile. During
target to a depth z. the time interval At. the front of

the indicated section is displaced a
In (31. the authors examined the balance of distance uAt, while the rear is

impulse and momentum across the deformed and undeformed displaced a distance vAt.
sections (Fig. 2). Application of this principle leads
to the equation of motion for the undeformed section. Tate [1.2] has advocated the use of a modified

Bernoulli equation to complete the system (see, also
+ I (v-u) - -p/P (1+0) (1) Tate [5]). This equation gives both an estimate of the

interface pressure p and a relationship between u and v
In this equation, v is the velocity of the undeformed
section, u is the penetration velocity, I is the 1 2 2 1 2undaformed section length, p is the constant penetrator p " 0 p u 4+ R - Ptv-u) + Y (3)
mass density, p is the interface pressure between the
penetrator tip and the target, and a is the engineering where 2 p denotes the target density and i and Y arestrain in the deformed section of the penstrator the dynamic strength factors of the target and
adjacent to the rigid-plastic interface. Dots over penetrator respectively. In general, these factors are
characters denotes time differentiation, quite different from the static yield strengths for-the

materials.
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Equations (1)-(3) form a system of three first
order ordinary differential equations in four (a) No Penetration
time-dependent unknowns: 1. v, u, and e. The modified
Bernoulli equation stems from pseudo-steady-state No penetration is implied by u - 0. The pressure
considerations. It is appropriate, therefore, to take at the rod/target interface can be formed from (3).
• to be constant. The target craters are approximated
by cylindrical holes of depth i and cross-sectional 1 2
area A/(l + e), where A is the initial cross-sectional P v 4 Y (5)

area of the rod. For the purpose of comparing the From (2), v - of and v - of which can be substituted
theory with 'experiment, the values of e will be Into (1) to obtain
computed from the "profile hole diameters" of the
targets. The "profile hole diameter" is the minimum
diameter of the penetration crater produced in the I , (2 3) 12 +_ 0 (6)
target (soe ?iS. 4). W Y

This equation can be Integrated once. subject to the

initial conditions t(O) - L and f(O) - V/o. The result
Is

S 6 1 2 + 12+37

+ __ L 2Y (7)
[-V~- po(2+3*)

When the event is over v - 0, which means that
S.... ." • -0. 9 1 j. and

2+3e

L 2+3e V)

where c 2 Y/p and taf is the length of rod remainingFig. A Portion of a 7075-T6 alumin~um target

-1 after it comes to rest. The rod is entirely consumed
after being Impacted at 2.4.9 km s when
by a hard steel rod. The target has
been sectioned through the resulting 2+3e V 2
crater to show its shape. 7 (6 ) - -1 (9)

By taking * as an experimentally determined
parameter, equations (l)-(3) represent a system of The corresponding strain satisfies
three first order ordinary differential equations in
the time-dependent unknowns a, v, u. When data for
material properties is supplied, these equations can be 2 V2
integrated and the total penetration depth z can be 2 + 3 (]) a + 2 () -0(10)

computed from

C - u (4) The strain given by equation (10) is the minimum value

The initial conditions for the system are v(O) - V and of e that can be sustained during this impact.
t(O) - L, where V is the impact velocity of the rod. When e passes from compressive strains which are
The initial penetration velocity u(0) can be found from less than 2/3 to compressive strains which exceed 2/3
equation (3). the exponent of the ratio L/a1  changes sign. However,

equation (8) continues to be valid, although the
INTEGRATION OF THE DIFFERENTIAL EQUATIONS algebraic structure is different.

For the most part, analytical solutions to the (b) Rigid Body Penetration
system (l)-(3) are not available. There are some
cases, however, where exact integrals are available. In this case, there is no rod deformation so that
They are: (a) when the rod disintegrates at the target u - v and 0 - 0. The pressure at the rod/target
surface - no penetration; (b) when the rod penetrates
without deforming - rigid body penetration; and (c) interface Is found from (3).
when the rod and target are of equal strengths. These
cases were originally treated by Tate 11.2) and later 1 2 2
by the present authors 131 for Tate's kinematical p - p u + R (11)

relation t - -(v-u), but not for the more general

kinematical relation presented in this paper, t - Since • - 0. a - L throughout the event and equation
(v-u)/e, equation (2). These Important cases will be (1) becomes
treated in the order in which they were presented in
131.
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2 Case (1) ao0 or all possible €oaressive

pL÷(eng (12) e eine ng) strains except -- 2

SNow. using this result. we can compute the penetration In this case. a first integral of (18) is

depth. from () i - u which can be used to transform
u-u du/da. Thus. (12) become 12. 21 2[ T7 2 1 L.2a

se--"3e) "L 0211+13)2 |(J) (21)

da--u du (13)de " F2 113
UC• 2+ p-L"r-

where the initial condtions 1(0) - L and 1(0) -
MV/(l+p)e have been employed. At the end of the event,

which can be directly integrated to give I - 0 and I - £I. where I is the final unconmmed

rod length. Equation (21) becomes

p2a
L( 

+3 f 2: _007P(2*3e Y
In this equation, we have assumed that a - 0 at impact This equation can be used to find I in terms of the
when u - V. The total penetration depth z/ occurs when problem parmeters. Whenever

the penetration velocity u reaches zero.

2V2 2 LVn 2-j + 115 2R -)->
-/ LI I + I212. a (23)

This formula is similar to the classical De Krre equation (22) can readily be solved for ,. For very
formula (see Reinhart and Pearson (61) or the Petry small strains, this inequality will break down.
equation (see Backman [7]). It is also the same as Fortunately, these strains are too small to be
that previously presented by the authors (3]. realistic for most of the events that concern us. For

very large strains, say -1 < a < -2/3. the signs on key
(c) Equal Strengths terms in (22) change, including the sign of a. Thus. we

As indicated earlier, the penetration. can again find t evern though the inequality in (23)
with-consumption case is not integrable, in general. is not satisfied.
However, the case for equal target and penetrator The total penetration depth z• is of considerable
strengths, R - Y, is an isolated example of rod
penetration, accompanied by deformation and erosion, interest. This quantity can be found by noting that u
which is Integrable. - *I/# and i - u by equation (4). Eliminatin u mid

The condition of equal strengths reduces (3) to integrating results in

- (L - ) (24)
u v (16) /

With this result. (2) becomes where f/ is the solution of (22).

of - • v (17) Case (ii) a- 0 or a - -2/3.

Using equations (16) and (17), we can substitute For the exceptional case, a first integral of (18)into (1) to obtain a single equation for 1. is

U 2 b -b 0 (16) -2 8, 1) + (25)
Where Pe L ll+,p) L

4(2+3si
a" 2( e (19) When the event concludes, there will be a final

unconsumed rod length I/. This quantity is given by
and

(20) V +026I€le)l• 20 / - L exl? he( ) " (26)

The integration of (18) now proceeds by The depth of penetration can be developed by
considering two separate cases. observing that u - -21/3p. The result is

(27To- (L - 1l (27)

where I is taken from (26).
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(d) General Case

For the general case of penetration accompanied by
rod deformation when the target and rod have unequal
strengths, mmerical integration to required, as noted
previously.

Pwatlrel Strength 46 M__
IS Taeget Stenfgth was MP•g 20

IS~ Cole- Cap. Aspect P Target Sthrngth 1243 MPg
0 a * 0 J0 Aspect Ratio 5

~L4 0 0 75 11.6 COIL. Esp. Penetrolsi Strength
Sa 1426MP

LI W , 3.3 Top.4 a 0 1260 0 2 1.2 A A 562 go

0 * o I i I £* *1 a6

LW 3
02 1.0-

as so

0. & as

10.2 Q

040 2 4 6 a
Normetl zed hImpocf V eocoity, V/e 00 2 4 6 6

Normolized Impact VelocIty,V/c

Fig. 5 Von-dimtensionalized penetration
depth versus non-dimentsional Impact Fig. 6 Non-dimenaionalized penetra:iou
velocity for hard steel targets by depth versus non-dimensional impact
hard steel penotrators having velocity for soft steel ta$gets and

various length-to-diameter ratios, three different sets of peienrators:

hard steel, soft steel and 7075

PERIuMMAL .RESULTS aluminum.

Details of the penetration experiments have been 2.0
published elsewhere 14]. Briefly 8umarized they Penetrator Strength 1263 mPg
involved targets and penetrators made from two steels .J (A Target Strength 1426 mPa 0 Coicul0aed

and two aluminums. Aspect ratios (length/diameter) of Aspect Ratio 5 a
I. is~

the rods ranged from 2.5 to 10 and Impact velocities J-
were approximately in the range 1-2.5 km/s. S 14

Figure 5 shows actual experimental results (open i
symbols) and calculated values (solid symbols) from 12

equations (22) and (24), for the penetration of hard 1.
stool targets by hard steel rods. The dynamic strength 0

of the material is 1428 KPa. as estimated from Taylor
Tests on the actual specimen material. The values of a Z 06
have been estimated from post-test measurements on the
profile hole diameters of sectioned targets (see Fig. 0.4 o
4). The comparison with experiment is generally z = 0
favorable. As expected, better agreement is achieved
for the longer rods (higher aspect ratios). 0

Results obtained by numerical integration of 0 2 4 G 8
equations (1)-(4) are compared with actual experimental Normalized Impact Velocity. V/c
results in Figures 6-9. The targets are soft steel
(1263 We), hard steel (1428 lPa), 2024 aluminum (395
Ma), and 7075 aluminum (562 ,Pa). Various penetrators Fil. 7 Non-dimensionalized penetration
are used. The penetrator strengths are indicated in depth versus non-dimensional impact
the figlues. A2l of the rods have an aspect ratio of velocity for hardened steel targets

5. anid soft steel pesetrators.
The agreement of theory with experiment is

geerally good. It is especially so when one considers
that the dynamic strengths are estimated from actual
laboratory measurements and not taken as adjustable
Parameters. The authors* theory (8) was used to make
the dynamic strength estimates.
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CONCLUSION

The theory of the mushrooming pensetrator is a
rather dramatic departure from the Tate Theory.
Typically, the penetration depths predicted by the Tate
Theory are about twice those predicted by the modified
theory for the same material constants. The difference

_ __ 
is primarily due to the lack of a toashroom on the tip
of the penetrator in the earlier theory.

Target T 11"t Srmg 5 35 MPG During the process of penetration, the eroding rod
Aeect Ratio S declerates as it goes into the target. It is quite

1l.6. COl. Esp. Pemelroto Strength likely that the mushroom strain at the rod end varies
a a 1428 uPe as the penetration velocity changes. This speculation

1i.4 e o 1 263 D So is sustained by many experimental observations of the

. & a a 562 type shown by fig. 4 in which the crater diameter
a clearly varies from end to end. On the other hand,

2 1.O e o this strain is simply taken as a constant in the
0.0OT a present analysis. It is remarkable how such an

& sa approach can yield such good agreement with the

o a te experimental data.
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